Chapitre 6.3 – Les couleurs dans un ray tracer

La couleur

οù

Une couleur \ddot{S} est un triplet représentant les trois canaux de couleur élémentaire rouge (red), vert (green) et bleu (blue). Un canal doit idéalement avoir une valeur entre 0 et 1 afin d'éviter la saturation 1:

$$\ddot{S} = (S_{R}, S_{G}, S_{B})$$

 $S_{\rm R}$: Niveau de rouge dans la couleur de la surface ($S_{\rm R}$ \in [0..1]).

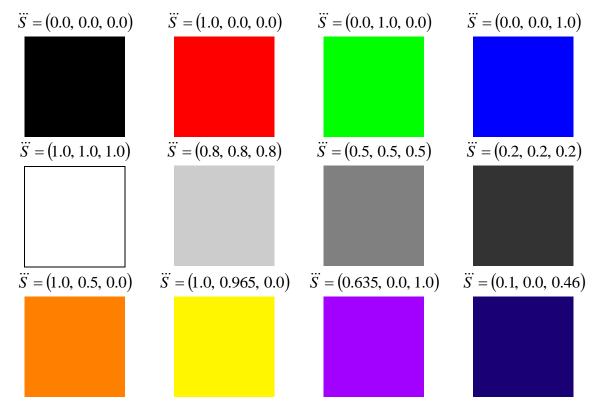
 $S_{\rm G}$: Niveau de vert dans la couleur de la surface ($S_{\rm G}$ \in [0..1]).

 $S_{\rm B}$: Niveau de bleu dans la couleur de la surface ($S_{\rm B}$ \in [0..1]).

On utilise la notation S_{λ} pour désigner un canal quelconque d'une couleur \ddot{S} dans une équation mathématique utilisant des couleurs :

$$S_{\lambda}$$
 tel que $\lambda \in \{R, G, B\}$ et $S_{\lambda} \in [0..1]$

Voici différentes représentations de couleur en fonction du vecteur couleur \ddot{S} :



¹ La majorité des logiciels ou classe (comme *BufferedImage* de java) n'accepte pas un canal de couleur supérieur à 1.

L'addition des couleurs

L'addition de deux couleurs \ddot{S}_{x} et \ddot{S}_{y} permet d'obtenir une **couleur amplifiée** \vec{S}_{x+y} plus lumineuse. L'addition s'effectue en additionnant les composantes des vecteurs des couleurs $\ddot{S}_{\rm X}$ et $\ddot{S}_{\rm Y}$ canal λ par canal λ :

$$\ddot{S}_{X} + \ddot{S}_{Y} = (S_{RX} + S_{RY}, S_{GX} + S_{GY}, S_{BX} + S_{BY})$$

 $S_{\lambda X}$: Canal λ de la couleur S_{X} . ($\lambda \in \{R, G, B\}$) οù

 $S_{\lambda Y}$: Canal λ de la couleur S_{Y} . ($\lambda \in \{R, G, B\}$)

$$S_{\rm Y} = (0.0, 1.0, 0.0)$$

$$\ddot{S}_{X} = (1.0, 0.0, 0.0)$$
 + $\ddot{S}_{Y} = (0.0, 1.0, 0.0)$ = $\ddot{S} = (1.0, 1.0, 0.0)$

Saturation d'une couleur

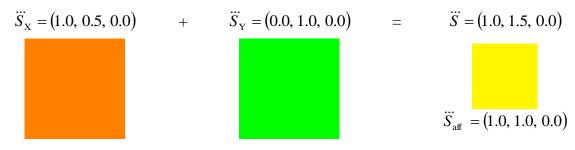
Lorsque l'on réalise des additions de couleur, il est possible qu'un canal S_{λ} sature ce qui correspond à avoir une valeur supérieure à 1. Il est primordial de régler cette situation avant de dessiner cette couleur. Il existe plusieurs algorithmes complexes² pour gérer cette situation.

L'algorithme le plus simple consiste à réduire à tous les canaux excédant la valeur limite (qui est de 1) à la valeur limite. Avec la fonction mathématique « min », on peut alors formater toutes les couleurs de façon adéquate avant qu'elle soit affichée avec l'équation

$$\ddot{S}_{\text{aff}} = \min(\ddot{S}, 1.0) = (\min(S_R, 1.0), \min(S_G, 1.0), \min(S_B, 1.0))$$

où la fonction $\min(S_{\lambda}, 1.0)$ prend la valeur la plus petite entre S_{λ} et 1.0 pour chaque canaux R, G et B de la couleur à afficher \ddot{S}_{aff} .

Voici un exemple d'addition de deux couleurs avec la normalisation à l'affichage :



² On peut normaliser la saturation en fonction du canal plus dominant dans la couleur. Le canal dominant ce fait réduire à 1.0 et les autres se font diviser par un facteur de proportion (exemple $S_{\lambda \max}$).

La multiplication d'une couleur par un scalaire

La multiplication d'une couleur \ddot{S}_X par un scalaire k correspond à **accentuer** (k>1) ou **atténuer** (k<1) chacun des canaux de la couleur \ddot{S}_X par une facteur commun en multipliant chaque canal $S_{\lambda X}$ par le scalaire k. À moins d'une application très particulière, une couleur est traditionnellement toujours positive ce qui interdit l'existence d'un scalaire négatif (doit respecter k>0):

$$k \, \tilde{S} = \left(k \, S_{\rm R} \,, \, k \, S_{\rm G} \,, \, k \, S_{\rm B} \right)$$
où $S_{\lambda \rm X}$: Canal λ de la couleur $S_{\rm X}$. ($\lambda \in \{ {\rm R}, \, {\rm G}, \, {\rm B} \}$)
$$S_{\lambda \rm Y}: {\rm Canal} \, \lambda \, {\rm de \, la \, couleur} \, S_{\rm Y}. \, (\lambda \in \{ {\rm R}, \, {\rm G}, \, {\rm B} \})$$

$$k = 0.6 \qquad \qquad \tilde{S} = \left(0.8, \, 1.0, \, 0.5 \right) \qquad = \qquad k \, \tilde{S} = \left(0.48, \, 0.6, \, 0.3 \right)$$

$$k = 1.5 \qquad \qquad \tilde{S} = \left(0.9, \, 0.5, \, 0.8 \right) \qquad = \qquad k \, \tilde{S} = \left(1.35, \, 0.75, \, 1.2 \right)$$
(Attention: couleur saturée!!!)

La multiplication entre deux couleurs

La multiplication entre deux couleurs $\ddot{S}_{\rm X}$ et $\ddot{S}_{\rm Y}$ correspond à effectuer un **filtrage** entre deux couleurs. La multiplication nécessite le produit d'un par de composante $S_{\lambda \rm X}$ et $S_{\lambda \rm Y}$ que l'on attribue à la composante de la couleur résultante :

$$\ddot{S}_{X}\ddot{S}_{Y} = \left(S_{RX}S_{RY}, S_{GX}S_{GY}, S_{BX}S_{BY}\right)$$

où $S_{\lambda X}$: Canal λ de la couleur S_{X} . ($\lambda \in \{R, G, B\}$) $S_{\lambda Y}$: Canal λ de la couleur S_{Y} . ($\lambda \in \{R, G, B\}$) $\ddot{S}_{X} = (0.5, 0.3, 0.7)$ $\ddot{S}_{Y} = (0.2, 1.0, 0.4) = (0.1, 0.4)$

