
Ondes et physique moderne

Pré requis : Section 3.6 et 3.8

Interférence et diffraction combinée sur pellicule mince

Une fine couche de pellicule de plastique (n=1,4) de longueur D=2 cm dont l'épaisseur varie linéairement jusqu'à une hauteur H=0,5 µm est déposée sur un bloc de verre (n=1,5) tel qu'illustré sur le schéma ci-contre.

On éclaire verticalement le montage avec un laser émettant de la lumière à 520 nm bloqué partiellement par la présence d'un masque muni de deux trous rectilignes de largueur a=0,12 mm séparés par une distance d=0,25 mm. L'écran est situé à une distance L=1,5 m au-dessus du montage et il est centré avec le montage en x=1 cm.

Identifiez les 11 coordonnées x le long de la pellicule de plastique ($x \in \{0, D\}$) où il n'y aura pas la présence d'un reflet de lumière sur la pellicule de plastique.

Présentez vos coordonnées x dans un <u>tableau en ordre croissant</u> avec une <u>justification</u> de la cause de l'absence du reflet (type d'interférence en jeu).

P.S. Puisque L >> D, l'approximation des petits angles est valide.

Ondes et physique moderne

Pré requis : Section 3.6 et 3.8

Solution:

Minimum en diffraction : (où $\theta_{\rm D}$ correspond à l'angle en diffraction)

$$\delta = m\lambda$$
 \Rightarrow $a\sin(\theta_{\rm D}) = m\lambda$ \Rightarrow $\theta_{\rm D} = \arcsin\left(\frac{m\lambda}{a}\right)$

Les positions en *x* seront :

$$\tan(\theta_{D}) = \frac{y}{L} \implies y = L \tan(\theta_{D})$$

$$\Rightarrow x = \left\{ \frac{D}{2} - y, \frac{D}{2} + y \right\} \text{ tel que } x \in \{0, D\} \text{ et } m \in \mathbb{N} \text{ (excluant } m = 0).$$

m	$\theta_{\rm D}$ (rad)	y (m)	x (m) côté gauche	x (m) côté droit
1	$4,33\times10^{-3}$	0,0065	0,0035	0,0165

P.S. L'approximation des petits angles $\sin(\theta_D) \approx \tan(\theta_D) = y/L$ est valide également.

Minimum en interférence de Young : (où θ_{I} correspond à l'angle en diffraction)

$$\delta = \left(m + \frac{1}{2}\right)\lambda \qquad \Rightarrow \qquad d\sin(\theta_{\rm I}) = \left(m + \frac{1}{2}\right)\lambda \qquad \Rightarrow \qquad \theta_{\rm I} = \arcsin\left(\left(m + \frac{1}{2}\right)\frac{\lambda}{d}\right)$$

Les positions en *x* seront :

$$\tan(\theta_{\rm I}) = \frac{y}{L} \quad \Rightarrow \quad y = L \tan(\theta_{\rm I})$$

$$\Rightarrow \quad x = \left\{ \frac{D}{2} - y, \frac{D}{2} + y \right\} \text{ tel que } x \in \{0, D\} \text{ et } m \in \mathbb{N} \text{ (incluant } m = 0).$$

m	$\theta_{\rm D}$ (rad)	y (m)	x (m) côté gauche	x (m) côté droit
0	$1,04\times10^{-3}$	0,00156	0,00844	0,0116
1	$3,12\times10^{-3}$	0,00468	0,00532	0,0147
2	$5,20\times10^{-3}$	0,00780	0,00220	0,0178

P.S. L'approximation des petits angles $\sin(\theta_1) \approx \tan(\theta_1) = y/L$ est valide également.

Ondes et physique moderne

Pré requis : Section 3.6 et 3.8

Évaluons l'épaisseur de la pellicule en fonction de la position x:

$$\tan(\alpha) = \frac{H}{D}$$
 et $\tan(\alpha) = \frac{e}{x}$ donc $\frac{e}{x} = \frac{H}{D}$ $\Rightarrow e = \frac{H}{D}x$

Les positions en interférence destructive en réflexion sur pellicule : $(n_p = 1,4)$

$$\delta = \left(m + \frac{1}{2}\right)\lambda_{p} \qquad \Rightarrow \qquad 2e + (0) = \left(m + \frac{1}{2}\right)\lambda_{p} \qquad \text{(réflexion dure-dure)}$$

$$\Rightarrow \qquad 2e = \left(m + \frac{1}{2}\right)\left(\frac{\lambda}{n_{p}}\right)$$

$$\Rightarrow \qquad 2\left(\frac{H}{D}x\right) = \left(m + \frac{1}{2}\right)\frac{\lambda}{n_{p}} \qquad \text{(Remplacer } e = \frac{H}{D}x\text{)}$$

$$\Rightarrow \qquad x = \frac{D}{2H}\left(m + \frac{1}{2}\right)\frac{\lambda}{n_{p}} \quad \text{et } m \in \mathbb{N} \text{ (incluant } m = 0\text{)}.$$

m	<i>x</i> (m)
0	0,00371
1	0,01114
2	0,01857

Voici un résumé des positions x où il n'y a pas de reflet observé :

Position (m)	Motif de l'interférence	No de l'association	Valeur de m
0	côté gauche pellicule		
0,0022	Young	1	m = 2
0,0035	Diffraction	2	m = 1
0,00371	Pellicule		m = 0
0,00532	Young	3	m = 1
0,00844	Young	4	m = 0
0,001	centre pellicule		
0,01114	Pellicule		m = 1
0,0116	Young	4	m = 0
0,0147	Young	3	m = 1
0,0165	Diffraction	2	m = 1
0,0178	Young	1	m = 2
0,01857	Pellicule		m = 2
0,02	côté droit pellicule		