# Chapitre 9: La théorie du Big Bang

Objectif: Vous initier à la cosmologie, l'étude de la structure globale de l'Univers et de son évolution.

# **RÉSUMÉ PARTICIPATIF:**

### Introduction à la quatrième partie (p. 368-369)

Avec le chapitre 9, on commence la quatrième partie du livre, « Un cosmos en **évolution** » Pour avoir un apercu de ce que

| e <b>volution ».</b> Four avoir un aperçu de ce que<br>cette partie vous réserve, il est intéressant de li<br>le texte de pages 368-369. |                     |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|
| Quelle est la grande idée associée à la quatrièn partie?                                                                                 | ne<br>-             |  |  |  |
| Quelle idée, parmi les plus importantes de l'histoire de la science, a été développée au XI siècle?                                      | —<br>X <sup>e</sup> |  |  |  |
| Quand Einstein a entrepris ses travaux, quelle idée préconçue avait-il concernant l'Univers?                                             |                     |  |  |  |
| Aujourd'hui, on peut dire que la cosmologie es<br>l'équivalent en astronomie de la théorie de<br>en biologie.                            | t                   |  |  |  |

### 9.1 Un univers fini ou infini?

| La théorie                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| appliquée à l'ensemble de l'Univers donne des résultats incohérents, que l'on suppose qu'il soit fini ou infini.                                                       |
| La section en bleu 'pages370-371' n'est pas au programme.                                                                                                              |
| Près d'un siècle et demi après Newton, relance le débat cosmologique à partir d'une observation toute simple :                                                         |
| Il réalise que cela veut dire qu'il ne peut y avoir des étoiles jusqu'à l'infini, car sinon                                                                            |
| et le ciel                                                                                                                                                             |
| nocturne serait aussi brillant que                                                                                                                                     |
| situation est analogue à celle d'une personne égarée au milieu d'un : si ce dernier es assez grand, chaque ligne de visée frappe et il est impossible de voir au-delà. |
| Comme l'hypothèse privilégiée à l'époque était celle d'un Univers, on appela cette simple observation.                                                                 |
| Comment résoudre le problème? On peut supposer que de la                                                                                                               |
| nous cache les étoiles trop lointaines, mais d'après le principe de                                                                                                    |
| , découvert vers                                                                                                                                                       |
| , cette solution ne fonctionne pas :<br>éventuellement, autant d'énergie serait ré-émise<br>qu'absorbée.                                                               |
| Une meilleure solution : comme la lumière ne se déplace pas et qu'aucun objet ne peut émettre de la lumière,                                                           |
| les étoiles lointaines sont invisibles parce que la lumière n'a pas encore eu le temps de nous parvenir depuis leur naissance.                                         |
| En fait, comme les étoiles ne sont pas<br>, l'étendue de leur distribution ne                                                                                          |
| change rien au problème : retour à la case départ!                                                                                                                     |

## 9.2 Einstein et la constante cosmologique

| Comme Newton, Einstein entreprend d'appliquer                             |
|---------------------------------------------------------------------------|
| sa théorie à Cela est plus facile que l'on peut croire à prime abord, car |
| plus facile que l'on peut croire à prime abord, car                       |
| aux échelles les plus grandes, on peut considérer                         |
| l'Univers comme                                                           |
| Les observations récentes le confirment : à une                           |
| échelle de ou plus, il n'y a pas de                                       |
| différence entre les propriétés globales de deux                          |
| régions prises au hasard. L'hypothèse que toute                           |
| région assez grande de l'Univers est                                      |
| représentative de l'ensemble de l'Univers se                              |
| nomme principe                                                            |
| Einstein découvre que la relativité générale                              |
| appliquée à l'ensemble de l'Univers implique que                          |
| sous l'effet de la présence de matière, l'espace                          |
| devrait être                                                              |
| On peut éviter ce phénomène (qu'Einstein trouve                           |
| aberrant) de deux façons :                                                |
| 1                                                                         |
| 2                                                                         |
| Einstein opte pour la solution no et introduit                            |
| dans ses équations une constante cosmologique                             |
| qui représente                                                            |
| Il qualifia plus tard cette décision de la plus                           |
| grande En effet, si                                                       |
| Einstein avait cru en la première version de sa                           |
| théorie, il aurait pu prévoir théoriquement                               |
| avant la                                                                  |
| découverte observationnelle de ce phénomène                               |
| faite par                                                                 |
|                                                                           |

## 9.3 L'expansion de l'espace

| Dans la théorie d'Einstein, l'expansion de l'Univers est due au gonflement de l'espace, ce qui peut se visualiser à l'aide de la célèbre analogie du                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| analogie du  L'espace correspond à et le galaxies sont représentées par                                                                                                                                                                                                                             |
| Cette analogie est beaucoup plus conforme à l'expansion de l'Univers décrite par la théorie de la relativité que l'analogie de                                                                                                                                                                      |
| Finalement, une implique qu'il y a un mouvement des fragments à travers un espace, tandis que dans l'analogie du pain, la matière (les raisins) est immobile par rapport à l'espace (la pâte) et c'est l'espace qui gonfle, conformément à l'explication d'Einstein.                                |
| Vrai ou faux? L'expansion de l'espace affecte de manière appréciable la taille des objets qui en font partie                                                                                                                                                                                        |
| Depuis la formation de la Terre, l'espace a gonflé d'un facteur environ.                                                                                                                                                                                                                            |
| L'expansion de l'espace a-t-elle un effet appréciable sur :  • la taille de l'orbite de la Terre?  • la taille de l'orbite du Soleil dans la Voie lactée?                                                                                                                                           |
| • les distances entre les amas de galaxies?                                                                                                                                                                                                                                                         |
| L'analogie du pain au raisin explique parfaitement la loi de Hubble : plus un raisin est éloigné de nous, plus il y a de centimètres cubes de pâte entre nous et le raisin et plus l'expansion nette est importante. Le rythme de gonflement est partout le même, mais la distance produit un effet |
| Comme l'expansion est due à la présence de matière dans l'espace, et que la matière était                                                                                                                                                                                                           |

| concentrée dans le passé, le taux d'expansion $H$ devait être plus dans le passé. Quand on utilise la loi de Hubble, il faut donc s'assurer que $v$ , $H$ et $D$ soient mesurés                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lorsqu'on observe une galaxie plus rapprochée que quelques d'années-lumière, on peut négliger la variation de $H$ et de la distance $D$ de la galaxie pendant le voyage de la lumière. C'est d'ailleurs comme cela que l'on peut déterminer la valeur actuelle du paramètre de Hubble : $H_A = $ (km/s)/Mpc (avec une incertitude de $\pm$ %). |
| Cette valeur peut être ré-exprimée comme (nm/a)/km : chaque année, l'expansion de l'Univers agissant sur un kilomètre d'espace lui ajoute nm de longueur, soit environ la taille d'un                                                                                                                                                          |
| 9.4 Le décalage vers le rouge cosmologique                                                                                                                                                                                                                                                                                                     |
| Le décalage vers le rouge des galaxies n'est pas vraiment un effet Doppler; il est plutôt dû au fait que la lumière que nous recevons des galaxies est                                                                                                                                                                                         |
| Le rapport entre la taille de l'Univers à un instant donné et sa taille actuelle se nomme (symbole : ).                                                                                                                                                                                                                                        |
| Si l'Univers est infini en ce moment, il l'a toujours été car l'infini multiplié par n'importe quelle valeur (sauf) donne toujours l'infini.                                                                                                                                                                                                   |
| Imaginons que nous recevons aujourd'hui un photon qui a été émis lorsque $e=0,25$ ; pendant son trajet, l'Univers a gonflé d'un facteur et ainsi, son facteur de décalage vers le rouge vaut $\delta=$ La relation entre $\delta$ et $e$ est donc :                                                                                            |
| 9.5 Big Bang!                                                                                                                                                                                                                                                                                                                                  |
| Comme on l'a vu au chapitre 8, la masse volumique actuelle de la matière de l'Univers (visible et invisible) vaut $_{}m_p/m^3$ . Si on recule dans le temps à l'époque où $e$ valait 0,1, le volume de l'Univers était plus petit par un facteur $_{}$ et la masse volumique de la matière valait $m_p/m^3$ .                                  |

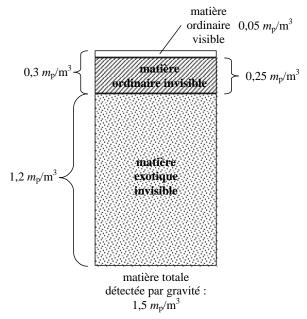
| Si on recule davantage dans le temps, on atteint la masse volumique de, qui vaut $10^{93}$ kg/m³, à un instant que l'on nomme instant de  Pour reculer encore davantage, il faudrait disposer d'une théorie de la                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| est donc le premier instant de l'histoire de l'Univers que l'on peut décrire avec la science actuelle, et les cosmologistes mesurent l'âge de l'Univers à partir de cet instant.                                                                                                                                                                                                                                                                      |
| Dans les années 1950, cet instant a été surnommé « » par un astronome qui ne croyait pas en ce scénario, afin de le discréditer et de montrer son manque de sérieux. Ironiquement, l'usage du terme s'est répandu, et aujourd'hui, la théorie selon laquelle l'Univers a commencé par un état initial de haute densité s'appelle théorie C'est un choix malheureux car                                                                                |
| cela évoque une, ce qui n'est pas<br>une analogie très pertinente pour décrire<br>l'évolution de l'Univers, comme on l'a vu plus<br>haut.                                                                                                                                                                                                                                                                                                             |
| Dans les années 1990, une revue américaine d'astronomie a lancé un concours pour trouver un nouveau nom à la théorie. Quel a été le terme gagnant?                                                                                                                                                                                                                                                                                                    |
| Certains vulgarisateurs scientifiques défendent l'hypothèse plus que douteuse qui affirme que l'Univers a existé pendant une fraction de seconde avant l'instant de Planck. Mais il existe une autre façon de voir les choses qui consiste à dire qu'il n'y a tout simplement pas eu d'avant : on peut faire une analogie et dire que chercher à savoir ce qui s'est passé avant l'instant de Planck, c'est comme se demander ce qui se trouve        |
| possible qu'une masse volumique plus grande que celle de Planck empêche tout simplement l'espace-temps d'exister. L'origine de l'Univers serait alors un état qui n'est ni de la matière, ni de l'espace, ni du temps, et qu'un physicien a nommé L'instant de Planck serait le premier instant où le temps existe. Cette conception rejoint celle du philosophe chrétien qui affirmait que Dieu avait créé le temps en même temps que l'espace et la |
| matière, et qu'il n'y avait donc pas eu d'avant!                                                                                                                                                                                                                                                                                                                                                                                                      |

### 9.6 Le rayonnement de fond cosmologique

| En 1965, deux scientifiques travaillant pour ont découvert le                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ont découvert le rayonnement de fond cosmologique (RFC) , un rayonnement constant dans la partie du spectre et dont le spectre est celui d'un corps noir parfait. Or, la production d'un tel spectre nécessite l'interaction de la lumière avec de la matière au moins que ce qui existe aujourd'hui dans l'Univers, ce                                                                                                                                          |
| qui concorde à merveille avec la théorie du Big<br>Bang. La température associée à ce spectre de<br>corps noir vaut (arrondi au degré près) K.                                                                                                                                                                                                                                                                                                                   |
| Vrai ou faux? Dans l'Univers actuel, la masse volumique des photons du RFC est du même ordre de grandeur que celle de la matière Dans un univers en expansion, la température du RFC est au facteur d'échelle. Pour $e = 0,001$ , la température du RFC correspond à K, ce qui est la température nécessaire pour les atomes. Comme la matière dans cet état possède une très grande, la situation est analogue à ce qui se passe sur Terre lorsque le temps est |
| Dans le modèle d'Univers le plus récent, $e = 0,001$ se produit ans après le Big Bang. Si on essaie d'observer au-delà des galaxies les plus lointaines, on frappe un                                                                                                                                                                                                                                                                                            |
| correspondant à des régions de l'Univers<br>observées telles qu'elles se présentaient à cette<br>époque.                                                                                                                                                                                                                                                                                                                                                         |
| Dans l'histoire de l'Univers, le moment où les électrons se mettent en orbite autour des noyaux pour la première fois, et où l'opacité chute brusquement, se nomme de la matière et de la lumière. La « photo de bébé » de l'Univers (figure 9.9) qui correspond à ce moment de l'histoire de l'Univers révèle un RFC uniforme à ppm près.                                                                                                                       |

#### 9.7 La nucléosynthèse primordiale

Le scénario théorique de l'évolution de l'Univers dans les premiers jours qui ont suivi le Big Bang révèle que la plus grande partie de \_\_\_\_\_ qui existe dans l'Univers aujourd'hui a été formée dans un épisode de réactions nucléaires que l'on nomme nucléosynthèse primordiale.


Les <u>détails</u> de ce processus (étapes 1 à 6) ne sont pas au programme, mais regardez les informations en **caractères gras au début de chaque étape** qui en résument les éléments les plus pertinents. Le résumé participatif reprend à la sous-section « Nucléosynthèse primordiale et matière invisible » à la page 387.

| Le scénario théorique produit bien la quantité      |
|-----------------------------------------------------|
| d'hélium 4 observée, soit %. En revanche, la        |
| quantité d'autres isotopes légers qui sont produits |
| dans le scénario dépend fortement de la masse       |
| volumique de la matière à chaque étape du           |
| processus. En particulier, pour reproduire la       |
| quantité observée de, il faut que l                 |
| masse volumique de la matière ait une valeur        |
| assez bien déterminée, qui correspond à une         |
| masse volumique actuelle pour la matière (si on     |
| ne tient pas compte de l'incertitude) de            |
| $m_{\rm p}/{ m m}^3$ .                              |
|                                                     |

| Cela est fois plus grand que la masse      |      |
|--------------------------------------------|------|
| volumique de la matière visible, mais      | fois |
| plus petit que la masse volumique totale d | e la |
| matière déduite par                        | _    |
| (matière visible + invisible).             |      |

Comme le scénario de nucléosynthèse primordial ne contraint que la masse volumique des particules qui participent aux réactions nucléaires (protons et neutrons), cela signifie que la plus grande partie de la matière invisible doit être constituée de particules qui ont une masse significative mais qui ne sont ni des protons, ni des neutrons : on appelle cela de la matière \_\_\_\_\_\_\_, par contraste avec les protons et les neutrons que l'on appelle matière

Figure synthèse utile (qu'on ne retrouve pas dans le livre!):



La nature de la matière exotique demeure un mystère, mais certains candidats hypothétiques ont été proposés, comme les WIMPs (

| , | 1                   | 7       |  |
|---|---------------------|---------|--|
|   | ) et les <i>q</i> : | uarks _ |  |

### 9.8 L'émergence de la structure

Comme le RFC est uniforme à ppm près et que la matière et la lumière étaient couplés jusqu'au moment de son émission, cela veut dire que la matière \_\_\_\_\_ ans après le Big Bang était aussi uniforme à ppm près. Or, les images de galaxies lointaines comme le champ profond de Hubble révèlent que les premières galaxies étaient déjà formées après le Big Bang. Comment expliquer qu'en un temps aussi court on soit passé d'un Univers quasi homogène à un Univers qui contient des concentrations de masse assez grandes pour former des galaxies et des étoiles? La gravité tend à augmenter les fluctuations de masse initiales, mais en revanche, la encore assez intense dans le jeune Univers tend à les disperser. Les scénarios théoriques sont incapables de produire des galaxies sous l'effet de la gravité en si peu de temps... à moins de faire appel à la \_ . En supposant que cette dernière n'interagit pas avec la , on pourrait supposer qu'elle était déjà passablement agglomérée à l'époque du découplage, et que le champ gravitationnel de ces agglomérations a servi de base pour

\* \* \*

l'agglomération de la matière ordinaire...

Une fois le résumé complété, vous pouvez tester votre maîtrise de la matière à partir de la liste des termes importants et des questions de révision de la fin du chapitre 9..

Vous devriez être en mesure de définir tous les termes importants sauf antiparticule, quark et théorie de l'état stationnaire.

Vous devriez aussi être en mesure de répondre aux questions de révision suivantes :

4, 5, 6, 8, 9, 10, 14, 17, 20, 21, 22, 23, 28, 29, 30, 31, 32